Enhanced formaldehyde detoxification by overexpression of glutathione-dependent formaldehyde dehydrogenase from Arabidopsis.

نویسندگان

  • Hakima Achkor
  • Maykelis Díaz
  • M Rosario Fernández
  • Josep Antoni Biosca
  • Xavier Parés
  • M Carmen Martínez
چکیده

The ADH2 gene codes for the Arabidopsis glutathione-dependent formaldehyde dehydrogenase (FALDH), an enzyme involved in formaldehyde metabolism in eukaryotes. In the present work, we have investigated the potential role of FALDH in detoxification of exogenous formaldehyde. We have generated a yeast (Saccharomyces cerevisiae) mutant strain (sfa1Delta) by in vivo deletion of the SFA1 gene that codes for the endogenous FALDH. Overexpression of Arabidopsis FALDH in this mutant confers high resistance to formaldehyde added exogenously, which demonstrates the functional conservation of the enzyme through evolution and supports its essential role in formaldehyde metabolism. To investigate the role of the enzyme in plants, we have generated Arabidopsis transgenic lines with modified levels of FALDH. Plants overexpressing the enzyme show a 25% increase in their efficiency to take up exogenous formaldehyde, whereas plants with reduced levels of FALDH (due to either a cosuppression phenotype or to the expression of an antisense construct) show a marked slower rate and reduced ability for formaldehyde detoxification as compared with the wild-type Arabidopsis. These results show that the capacity to take up and detoxify high concentrations of formaldehyde is proportionally related to the FALDH activity in the plant, revealing the essential role of this enzyme in formaldehyde detoxification.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cloning of the Arabidopsis and rice formaldehyde dehydrogenase genes: implications for the origin of plant ADH enzymes.

This article reports the cloning of the genes encoding the Arabidopsis and rice class III ADH enzymes, members of the alcohol dehydrogenase or medium chain reductase/dehydrogenase superfamily of proteins with glutathione-dependent formaldehyde dehydrogenase activity (GSH-FDH). Both genes contain eight introns in exactly the same positions, and these positions are conserved in plant ethanol-acti...

متن کامل

Multiple formaldehyde oxidation/detoxification pathways in Burkholderia fungorum LB400.

Burkholderia species are free-living bacteria with a versatile metabolic lifestyle. The genome of B. fungorum LB400 is predicted to encode three different pathways for formaldehyde oxidation: an NAD-linked, glutathione (GSH)-independent formaldehyde dehydrogenase; an NAD-linked, GSH-dependent formaldehyde oxidation system; and a tetrahydromethanopterin-methanofuran-dependent formaldehyde oxidat...

متن کامل

Detoxification of Formaldehyde by the Spider Plant (Chlorophytum comosum L.) and by Soybean (Glycine max L.) Cell-Suspension Cultures.

The phytotoxicity of formaldehyde for spider plants (Chlorophytum comosum L.), tobacco plants (Nicotiana tabacum L. cv Bel B and Bel W3), and soybean (Glycine max L.) cell-suspension cultures was found to be low enough to allow metabolic studies. Spider plant shoots were exposed to 7.1 [mu]L L-1 (8.5 mg m-3) gaseous [14C]-formaldehyde over 24 h. Approximately 88% of the recovered radioactivity ...

متن کامل

Modulation of Nitrosative Stress via Glutathione-Dependent Formaldehyde Dehydrogenase and S-Nitrosoglutathione Reductase

Glutathione-dependent formaldehyde dehydrogenase (GFD) from Taiwanofungus camphorata plays important roles in formaldehyde detoxification and antioxidation. The enzyme is bifunctional. In addition to the GFD activity, it also functions as an effective S-nitrosoglutathione reductase (GSNOR) against nitrosative stress. We investigated the modulation of HEK (human embryonic kidney) 293T cells unde...

متن کامل

Formaldehyde Stress Responses in Bacterial Pathogens

Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 132 4  شماره 

صفحات  -

تاریخ انتشار 2003